Researchers have discovered a significant and previously unknown mechanism that many bacteria use to resist antibiotics.
Using a combination of computation and physical observation in the laboratory, the researchers have unraveled a sophisticated process that some commonly occurring bacteria use to save themselves from the rifamycin class of antibiotics, which occur naturally and are also manufactured to treat infectious diseases.
Rifamycins work by binding to RNA polymerase, a protein essential for bacterial life.
The resistant bacteria, which occur widely in the environment and in some human pathogens, have developed a protein that can eject the antibiotic from RNA polymerase. Once the rifamycin is dislodged, they use specially adapted proteins to attack and destroy it.
“What we’ve discovered is a brand-new trick up the sleeves of bacteria to evade this class of antibiotics,” explains researcher Gerry Wright, who leads the McMaster-based Global Nexus for Pandemics and Biological Threats. “It’s like a one-two punch. It’s fascinating and it’s so crafty.”
The discovery shows that the mechanisms of antimicrobial resistance (AMR) are more complex and highly evolved than scientists had previously recognized.
Source: Read Full Article